Most Popular in:

Skin Care

Email This Item! Print This Item!

Stem Cell Science & Age Management of Skin

By: Christine Heathman
Posted: June 30, 2010

page 4 of 5

Skin stem cells generate new skin to replace the cells lost every day and influence wound-healing. Skin begins with a single cell. One cell, dividing into two, then two into four and four into eight until there are billions of cells, patterned and diffuse, color-coded and clear, working-class and upper crust, ancient and young, defenders and helpers, assembled into a great, thriving mass that is a complete skin organ. And from this, millions drop from the skin daily and the replication process keeps new generations of cells in a replenishment course of action that can repeat itself more than 900 times during a life cycle of self-renewal.

Cell lineage. The formation of working tissues during the development of multicellular organisms depends in part on specific patterns of mitotic cell division. A series of such cell divisions similar to a family tree is called cell lineage, which traces the progressive determination of cells, restricting their developmental potential and their differentiation into specialized cell types. Cell lineages are controlled by intrinsic factors—cells acting according to their history and internal regulators—as well as extrinsic factors such as cell-cell signals and environmental inputs.

A cell lineage begins with stem cells. The stem cell name comes from the image of a plant stem, which grows upward, continuing to form more stems, while sending off leaves and branches to the side. The stem cell is as important to a differentiating skin cell as a branch is to a leaf. Healthy stem cells mean healthier, younger-acting skin.

Stem cells and age management

With current applications for treating and managing aging skin, scientists are focusing their research on adult stem cells located in the skin and are studying the potential of this cell type, coupled with its function related to chronological aging to help understand how the skin’s aging clock can be reset.2 Epidermal adult stem cells replenish and maintain the balance of cells within the skin tissue, and regenerate tissue caused by damage from a variety of sources, such as the sun, injury and acne. Age is the major adversary, and it diminishes the number of skin stem cells, making their ability to repair the skin less efficient.

Plants have stem cells comparable to human stem cells. Unlike humans, plants contain totipotent stem cells with the potential to regenerate a whole plant. This action gives scientific rise to the benefits of the plant stem cells’ ability to regenerate new leaves, flowers, seeds or a whole, fresh plant. Unlike human stem cells, plant stem cells can de-differentiate and become a stem cell.2