Most Popular in:


Email This Item! Print This Item!

The Future is Here

By: Sara Mason
Posted: March 3, 2010, from the March 2010 issue of GCI Magazine.

page 2 of 7

With the 2009 Nobel Prize of Physiology being awarded for telomere [the specialized chromosome structure involved in the replication and stability of the chromosome] research, there was much talk throughout 2009 of the potential for stabilizing telomere shortening and increasing cell life. All cells appear to have the gene that encodes an enzyme—called telomerase—capable of restoring shortened telomeres, the cell’s biological clock. The cells in which telomerase is active seem to be able to divide indefinitely.

In most normal cells, however, the activity of telomerase is somehow suppressed, so they cannot divide beyond a limited number, called the Hayflick limit or cellular senescence. When that happens, cells either die or enlarge, lose their function and slow down, hindering younger cells.

Basically, if the telomeres are shortened, cells age. Conversely, if telomerase activity is high, telomere length is maintained, and cellular senescence is delayed. A profound discovery when traditional thinking was to promote cell turnover to keep cells young. Even though knowledge of telomerase on human experiments is in its infancy, telomerase therapy will hold many promising possibilities for the field of antiaging in the future. The telomere-associated proteins sirtuins are a family of enzymes found naturally in the body that are said to prolong the life span of cells and slow the visible aging process as well. Resveratrol, the “wine compound,” has been around for years as a potent antioxidant and anti-inflammatory but got new buzz recently as a potential activator of sirtuins, increasing cell life.

One ingredient advancement is Renovage (Teprenone) from Sederma, which claims to stabilize telomere shortening, increasing cell life by one-third. Renovage also firms, hydrates, plumps and reduces the appearance of wrinkles, sun spots, redness and pores. Giving the company a head start in the preventive skin care market, the product targets younger consumers who are increasingly becoming aware of effective skin care from an earlier age and desiring products that will hold off the visual signs of aging.


While minimizing the cellular clock may be possible using genetic engineering, there are risks involved—especially so early in the understanding of how it works. It could possibly increase the risk of cancer or harm active, healthy cells. The simplest defense remains to be to avoid unnecessary cell divisions by minimizing exposure to factors that promote it—free radicals, inflammation, toxins and UV radiation. Antioxidants have the desired effect, but that’s not new.